000 03600nam a22005895i 4500
001 978-981-99-9939-2
003 DE-He213
005 20240730171432.0
007 cr nn 008mamaa
008 240228s2024 si | s |||| 0|eng d
020 _a9789819999392
_9978-981-99-9939-2
024 7 _a10.1007/978-981-99-9939-2
_2doi
050 4 _aTA1637-1638
072 7 _aTJF
_2bicssc
072 7 _aUYT
_2bicssc
072 7 _aCOM012050
_2bisacsh
072 7 _aTJF
_2thema
072 7 _aUYT
_2thema
082 0 4 _a621.382
_223
100 1 _aSingh, Pritpal.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_998547
245 1 0 _aBiomedical Image Analysis
_h[electronic resource] :
_bSpecial Applications in MRIs and CT scans /
_cby Pritpal Singh.
250 _a1st ed. 2024.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2024.
300 _aXI, 166 p. 1 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aBrain Informatics and Health,
_x2367-1750
505 0 _aChapter 1 Parkinson's disease MRIs analysis using fuzzy clustering approach -- Chapter 2 Parkinson's disease MRIs analysis using neutrosophic segmentation approach -- Chapter 3 Parkinson's disease MRIs analysis using neutrosophic clustering approach -- Chapter 4 Brain tumor segmentation using type-2 neutrosophic thresholding approach -- Chapter 5 COVID-19 scan image segmentation using quantum-clustering approach -- Chapter 6 Empirical Analyses.
520 _aThis book provides an in-depth study of biomedical image analysis. It reviews and summarizes previous research work in biomedical image analysis and also provides a brief introduction to other computation techniques, such as fuzzy sets, neutrosophic sets, clustering algorithm and fast forward quantum optimization algorithm, focusing on how these techniques can be integrated into different phases of the biomedical image analysis. In particular, this book describes novel methods resulting from the fuzzy sets, neutrosophic sets, clustering algorithm and fast forward quantum optimization algorithm. It also demonstrates how a new quantum-clustering based model can be successfully applied in the context of clustering the COVID-19 CT scans. Thanks to its easy-to-read style and the clear explanations of the models, the book can be used as a concise yet comprehensive reference guide to biomedical image analysis, and will be valuable not only for graduate students, but also for researchers and professionals working for academic, business and government institutes and medical colleges.
650 0 _aImage processing.
_97417
650 0 _aArtificial intelligence.
_93407
650 0 _aMachine learning.
_91831
650 0 _aArtificial intelligence
_xData processing.
_921787
650 1 4 _aImage Processing.
_97417
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aMachine Learning.
_91831
650 2 4 _aData Science.
_934092
710 2 _aSpringerLink (Online service)
_998550
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789819999385
776 0 8 _iPrinted edition:
_z9789819999408
776 0 8 _iPrinted edition:
_z9789819999415
830 0 _aBrain Informatics and Health,
_x2367-1750
_998552
856 4 0 _uhttps://doi.org/10.1007/978-981-99-9939-2
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cEBK
999 _c87582
_d87582