000 04125nam a22006015i 4500
001 978-3-030-86517-7
003 DE-He213
005 20240730172714.0
007 cr nn 008mamaa
008 210909s2021 sz | s |||| 0|eng d
020 _a9783030865177
_9978-3-030-86517-7
024 7 _a10.1007/978-3-030-86517-7
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aMachine Learning and Knowledge Discovery in Databases. Applied Data Science Track
_h[electronic resource] :
_bEuropean Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part V /
_cedited by Yuxiao Dong, Nicolas Kourtellis, Barbara Hammer, Jose A. Lozano.
250 _a1st ed. 2021.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2021.
300 _aXXXIV, 516 p. 187 illus., 153 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v12979
520 _aThe multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic. The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions. The volumes are organized in topical sections as follows: Research Track: Part I: Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and few-shot learning; learning algorithms and applications. Part II: Generative models; algorithms and learning theory; graphs and networks; interpretation, explainability, transparency, safety. Part III: Generative models; search and optimization; supervised learning; text mining and natural language processing; image processing, computer vision and visual analytics. Applied Data Science Track: Part IV: Anomaly detection and malware; spatio-temporal data; e-commerce and finance; healthcare and medical applications (including Covid); mobility and transportation. Part V: Automating machine learning, optimization, and feature engineering; machine learning based simulations and knowledge discovery; recommender systems and behavior modeling; natural language processing; remote sensing, image and video processing; social media.
650 0 _aArtificial intelligence.
_93407
650 0 _aSocial sciences
_xData processing.
_983360
650 0 _aComputer networks .
_931572
650 0 _aData mining.
_93907
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputer Application in Social and Behavioral Sciences.
_931815
650 2 4 _aComputer Communication Networks.
_9105120
650 2 4 _aData Mining and Knowledge Discovery.
_9105122
700 1 _aDong, Yuxiao.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9105123
700 1 _aKourtellis, Nicolas.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9105124
700 1 _aHammer, Barbara.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9105126
700 1 _aLozano, Jose A.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9105128
710 2 _aSpringerLink (Online service)
_9105129
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030865160
776 0 8 _iPrinted edition:
_z9783030865184
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v12979
_9105130
856 4 0 _uhttps://doi.org/10.1007/978-3-030-86517-7
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c88497
_d88497