000 | 10910nam a22006735i 4500 | ||
---|---|---|---|
001 | 978-3-030-87193-2 | ||
003 | DE-He213 | ||
005 | 20240730174845.0 | ||
007 | cr nn 008mamaa | ||
008 | 210922s2021 sz | s |||| 0|eng d | ||
020 |
_a9783030871932 _9978-3-030-87193-2 |
||
024 | 7 |
_a10.1007/978-3-030-87193-2 _2doi |
|
050 | 4 | _aTA1634 | |
072 | 7 |
_aUYQV _2bicssc |
|
072 | 7 |
_aCOM016000 _2bisacsh |
|
072 | 7 |
_aUYQV _2thema |
|
082 | 0 | 4 |
_a006.37 _223 |
245 | 1 | 0 |
_aMedical Image Computing and Computer Assisted Intervention - MICCAI 2021 _h[electronic resource] : _b24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part I / _cedited by Marleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Essert. |
250 | _a1st ed. 2021. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2021. |
|
300 |
_aXXXVII, 746 p. 252 illus. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aImage Processing, Computer Vision, Pattern Recognition, and Graphics, _x3004-9954 ; _v12901 |
|
505 | 0 | _aImage Segmentation -- Noisy Labels are Treasure: Mean-Teacher-Assisted Confident Learning for Hepatic Vessel Segmentation -- TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation -- Pancreas CT Segmentation by Predictive Phenotyping -- Medical Transformer: Gated Axial-Attention for Medical Image Segmentation -- Anatomy-Constrained Contrastive Learning for Synthetic Segmentation without Ground-truth -- Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels -- Multi-phase Liver Tumor Segmentation with Spatial Aggregation and Uncertain Region Inpainting -- Convolution-Free Medical Image Segmentation using Transformer Networks -- Consistent Segmentation of Longitudinal Brain MR Images with Spatio-Temporal Constrained Networks -- A Multi-Branch Hybrid Transformer Network for Corneal Endothelial Cell Segmentation -- TransBTS: Multimodal Brain Tumor Segmentation Using Transformer -- Automatic Polyp Segmentation via Multi-scale Subtraction Network -- Patch-Free 3D Medical Image Segmentation Driven by Super-Resolution Technique and Self-Supervised Guidance -- Progressively Normalized Self-Attention Network for Video Polyp Segmentation -- SGNet: Structure-aware Graph-based Network for Airway Semantic Segmentation -- NucMM Dataset: 3D Neuronal Nuclei Instance Segmentation at Sub-Cubic Millimeter Scale -- AxonEM Dataset: 3D Axon Instance Segmentation of Brain Cortical Regions -- Improved Brain Lesion Segmentation with Anatomical Priors from Healthy Subjects -- CarveMix: A Simple Data Augmentation Method for Brain Lesion Segmentation -- Boundary-aware Transformers for Skin Lesion Segmentation -- A Topological-Attention ConvLSTM Network and Its Application to EM Images -- BiX-NAS: Searching Efficient Bi-directional Architecture for Medical Image Segmentation -- Multi-Task, Multi-Domain Deep Segmentation with Shared Representations and Contrastive Regularization for Sparse Pediatric Datasets -- TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee Topology Preservation in Segmentations -- Learning Consistency- and Discrepancy-Context for 2D Organ Segmentation -- Partial-supervised Learning for Vessel Segmentation in Ocular Images -- Unsupervised Network Learning for Cell Segmentation -- MT-UDA: Towards Unsupervised Cross-Modality Medical Image Segmentation with Limited Source Labels -- Context-aware virtual adversarial training for anatomically-plausible segmentation -- Interactive segmentation via deep learning and B-spline explicit active surfaces -- Multi-Compound Transformer for Accurate Biomedical Image Segmentation -- kCBAC-Net: Deeply Supervised Complete Bipartite Networks with Asymmetric Convolutions for Medical Image Segmentation -- Multi-frame Attention Network for Left Ventricle Segmentation in 3D Echocardiography -- Coarse-to-fine Segmentation of Organs at Risk in Nasopharyngeal Carcinoma Radiotherapy -- Joint Segmentation and Quantification of Main Coronary Vessels Using Dual-branch Multi-scale Attention Network -- A Spatial Guided Self-supervised Clustering Network for Medical Image Segmentation -- Comprehensive Importance-based Selective Regularization for Continual Segmentation Across Multiple Sites -- ReSGAN: Intracranial Hemorrhage Segmentation with Residuals of Synthetic Brain CT Scans -- Refined Local-imbalance-based Weight for Airway Segmentation in CT -- Selective Learning from External Data for CT Image Segmentation -- Projective Skip-Connections for Segmentation Along a Subset of Dimensions in Retinal OCT -- MouseGAN: GAN-Based Multiple MRI Modalities Synthesis and Segmentation for Mouse Brain Structures -- Style Curriculum Learning for Robust Medical Image Segmentation -- Towards Efficient Human-Machine Collaboration: Real-Time Correction Effort Prediction for Ultrasound Data Acquisition -- Residual Feedback Network for Breast Lesion Segmentation in Ultrasound Image -- Learning to Address Intra-segment Misclassification in Retinal Imaging -- Flip Learning: Erase to Segment -- DC-Net: Dual Context Network for 2D Medical Image Segmentation -- LIFE: A Generalizable Autodidactic Pipeline for 3D OCT-A Vessel Segmentation -- Superpixel-guided Iterative Learning from Noisy Labels for Medical Image Segmentation -- A hybrid attention ensemble framework for zonal prostate segmentation -- 3D-UCaps: 3D Capsules Unet for Volumetric Image Segmentation -- HRENet: A Hard Region Enhancement Network for Polyp Segmentation -- A Novel Hybrid Convolutional Neural Network for Accurate Organ Segmentation in 3D Head and Neck CT Images -- TumorCP: A Simple but Effective Object-Level Data Augmentation for Tumor Segmentation -- Modality-aware Mutual Learning for Multi-modal Medical Image Segmentation -- Hybrid graph convolutional neural networks for anatomical segmentation -- RibSeg Dataset and Strong Point Cloud Baselines for Rib Segmentation from CT Scans -- Hierarchical Self-Supervised Learning for Medical Image Segmentation Based on Multi-Domain Data Aggregation -- CCBANet: Cascading Context and BalancingAttention for Polyp Segmentation -- Point-Unet: A Context-aware Point-based Neural Network for Volumetric Segmentation -- TUN-Det: A Novel Network for Thyroid Ultrasound Nodule Detection -- Distilling effective supervision for robust medical image segmentation with noisy labels -- On the relationship between calibrated predictors and unbiased volume estimation -- High-resolution segmentation of lumbar vertebrae from conventional thick slice MRI -- Shallow Attention Network for Polyp Segmentation -- A Line to Align: Deep Dynamic Time Warping for Retinal OCT Segmentation -- Learnable Oriented-Derivative Network for Polyp Segmentation -- LambdaUNet: 2.5D Stroke Lesion Segmentation of Diffusion-weighted MR Images. | |
520 | _aThe eight-volume set LNCS 12901, 12902, 12903, 12904, 12905, 12906, 12907, and 12908 constitutes the refereed proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, held in Strasbourg, France, in September/October 2021.* The 531 revised full papers presented were carefully reviewed and selected from 1630 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: image segmentation Part II: machine learning - self-supervised learning; machine learning - semi-supervised learning; and machine learning - weakly supervised learning Part III: machine learning - advances in machine learning theory; machine learning - attention models; machine learning - domain adaptation; machine learning - federated learning; machine learning - interpretability / explainability; and machine learning - uncertainty Part IV: image registration; image-guided interventions and surgery; surgical data science; surgical planning and simulation; surgical skill and work flow analysis; and surgical visualization and mixed, augmented and virtual reality Part V: computer aided diagnosis; integration of imaging with non-imaging biomarkers; and outcome/disease prediction Part VI: image reconstruction; clinical applications - cardiac; and clinical applications - vascular Part VII: clinical applications - abdomen; clinical applications - breast; clinical applications - dermatology; clinical applications - fetal imaging; clinical applications - lung; clinical applications - neuroimaging - brain development; clinical applications - neuroimaging - DWI and tractography; clinical applications - neuroimaging - functional brain networks; clinical applications - neuroimaging - others; and clinical applications - oncology Part VIII: clinical applications - ophthalmology; computational (integrative) pathology; modalities - microscopy; modalities - histopathology; and modalities - ultrasound *The conference was held virtually. | ||
650 | 0 |
_aComputer vision. _9114401 |
|
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aComputer engineering. _910164 |
|
650 | 0 |
_aComputer networks . _931572 |
|
650 | 0 |
_aBioinformatics. _99561 |
|
650 | 0 |
_aPattern recognition systems. _93953 |
|
650 | 1 | 4 |
_aComputer Vision. _9114402 |
650 | 2 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aComputer Engineering and Networks. _9114403 |
650 | 2 | 4 |
_aComputational and Systems Biology. _931619 |
650 | 2 | 4 |
_aAutomated Pattern Recognition. _931568 |
700 | 1 |
_ade Bruijne, Marleen. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9114404 |
|
700 | 1 |
_aCattin, Philippe C. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9114405 |
|
700 | 1 |
_aCotin, Stéphane. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9114406 |
|
700 | 1 |
_aPadoy, Nicolas. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9114407 |
|
700 | 1 |
_aSpeidel, Stefanie. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9114408 |
|
700 | 1 |
_aZheng, Yefeng. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9114409 |
|
700 | 1 |
_aEssert, Caroline. _eeditor. _0(orcid) _10000-0003-2572-9730 _4edt _4http://id.loc.gov/vocabulary/relators/edt _9114410 |
|
710 | 2 |
_aSpringerLink (Online service) _9114411 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783030871925 |
776 | 0 | 8 |
_iPrinted edition: _z9783030871949 |
830 | 0 |
_aImage Processing, Computer Vision, Pattern Recognition, and Graphics, _x3004-9954 ; _v12901 _9114412 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-030-87193-2 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c89659 _d89659 |