000 06491nam a22007095i 4500
001 978-3-030-60365-6
003 DE-He213
005 20240730180919.0
007 cr nn 008mamaa
008 201005s2020 sz | s |||| 0|eng d
020 _a9783030603656
_9978-3-030-60365-6
024 7 _a10.1007/978-3-030-60365-6
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aUncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis
_h[electronic resource] :
_bSecond International Workshop, UNSURE 2020, and Third International Workshop, GRAIL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings /
_cedited by Carole H. Sudre, Hamid Fehri, Tal Arbel, Christian F. Baumgartner, Adrian Dalca, Ryutaro Tanno, Koen Van Leemput, William M. Wells, Aristeidis Sotiras, Bartlomiej Papiez, Enzo Ferrante, Sarah Parisot.
250 _a1st ed. 2020.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2020.
300 _aXVII, 222 p. 85 illus., 76 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v12443
505 0 _aUNSURE 2020 -- Image registration via stochastic gradient Markov chain Monte Carlo -- RevPHiSeg: A Memory-Efficient Neural Network for Uncertainty Quantification -- Hierarchical brain parcellation with uncertainty -- Quantitative Comparison of Monte-Carlo Dropout Uncertainty Measures for Multi-Class Segmentation -- Uncertainty Estimation in Landmark Localization based on Gaussian Heatmaps -- Weight averaging impact on the uncertainty of retinal artery-venous segmentation -- Improving Pathological Distribution Measurements with Bayesian Uncertainty -- Improving Reliability of Clinical Models using Prediction Calibration -- Uncertainty Estimation in Medical Image Denoising with Bayesian Deep Image Prior -- Uncertainty Estimation for Assessment of 3D US Scan Adequacy and DDH Metric Reliability -- GRAIL 2020 -- Clustering-based Deep Brain MultiGraph Integrator Network for Learning Connectional Brain Templates -- Detection of Discriminative Neurological Circuits Using Hierarchical GraphConvolutional Networks in fMRI Sequences -- Graph Matching Based Connectomic Biomarker with Learning for Brain Disorders -- Multi-Scale Profiling of Brain Multigraphs by Eigen-based Cross-Diffusion and Heat Tracing for Brain State Proling -- Graph Domain Adaptation for Alignment-Invariant Brain Surface Segmentation -- Min-cut Max-flow for Network Abnormality Detection: Application to Preterm Birth -- Geometric Deep Learning for Post-Menstrual Age Prediction based on the Neonatal White Matter Cortical Surface -- The GraphNet Zoo: An All-in-One Graph Based Deep Semi-Supervised Framework for Medical Image Classification -- Intraoperative Liver Surface Completion with Graph Convolutional VAE -- HACT-Net: A Hierarchical Cell-to-Tissue Graph Neural Network for Histopathological Image Classification.
520 _aThis book constitutes the refereed proceedings of the Second International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2020, and the Third International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic. For UNSURE 2020, 10 papers from 18 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. GRAIL 2020 accepted 10 papers from the 12 submissions received. The workshop aims to bring together scientists that use and develop graph-based models for the analysis of biomedical images and to encourage the exploration of graph-based models for difficult clinical problems within a variety of biomedical imaging contexts.
650 0 _aArtificial intelligence.
_93407
650 0 _aPattern recognition systems.
_93953
650 0 _aComputer vision.
_9122474
650 0 _aSocial sciences
_xData processing.
_983360
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aAutomated Pattern Recognition.
_931568
650 2 4 _aComputer Vision.
_9122475
650 2 4 _aComputer Application in Social and Behavioral Sciences.
_931815
700 1 _aSudre, Carole H.
_eeditor.
_0(orcid)
_10000-0001-5753-428X
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122476
700 1 _aFehri, Hamid.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122477
700 1 _aArbel, Tal.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122478
700 1 _aBaumgartner, Christian F.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122479
700 1 _aDalca, Adrian.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122480
700 1 _aTanno, Ryutaro.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122481
700 1 _aVan Leemput, Koen.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122482
700 1 _aWells, William M.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122483
700 1 _aSotiras, Aristeidis.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122484
700 1 _aPapiez, Bartlomiej.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122485
700 1 _aFerrante, Enzo.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122486
700 1 _aParisot, Sarah.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9122487
710 2 _aSpringerLink (Online service)
_9122488
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030603649
776 0 8 _iPrinted edition:
_z9783030603663
830 0 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v12443
_9122489
856 4 0 _uhttps://doi.org/10.1007/978-3-030-60365-6
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c90582
_d90582