000 03816nam a22006375i 4500
001 978-3-540-70901-5
003 DE-He213
005 20240730182957.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 _a9783540709015
_9978-3-540-70901-5
024 7 _a10.1007/978-3-540-70901-5
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aFormal Concept Analysis
_h[electronic resource] :
_b5th International Conference, ICFCA 2007, Clermont-Ferrand, France, February 12-16, 2007, Proceedings /
_cedited by Sergei O. Kuznetsov, Stefan Schmidt.
250 _a1st ed. 2007.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2007.
300 _aX, 329 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v4390
505 0 _aRelational Galois Connections -- Semantology as Basis for Conceptual Knowledge Processing -- A New and Useful Syntactic Restriction on Rule Semantics for Tabular Datasets -- A Proposal for Combining Formal Concept Analysis and Description Logics for Mining Relational Data -- Computing Intensions of Digital Library Collections -- Custom Asymmetric Page Split Generalized Index Search Trees and Formal Concept Analysis -- The Efficient Computation of Complete and Concise Substring Scales with Suffix Trees -- A Parameterized Algorithm for Exploring Concept Lattices -- About the Lossless Reduction of the Minimal Generator Family of a Context -- Some Notes on Pseudo-closed Sets -- Performances of Galois Sub-hierarchy-building Algorithms -- Galois Connections Between Semimodules and Applications in Data Mining -- On Multi-adjoint Concept Lattices: Definition and Representation Theorem -- Base Points, Non-unit Implications, and Convex Geometries -- Lattices of Relatively Axiomatizable Classes -- A Solution of the Word Problem for Free Double Boolean Algebras -- On the MacNeille Completion of Weakly Dicomplemented Lattices -- Polynomial Embeddings and Representations -- The Basic Theorem on Labelled Line Diagrams of Finite Concept Lattices -- Bipartite Ferrers-Graphs and Planar Concept Lattices.
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer science
_xMathematics.
_93866
650 0 _aDiscrete mathematics.
_912873
650 0 _aMachine theory.
_9129931
650 0 _aSoftware engineering.
_94138
650 0 _aData mining.
_93907
650 0 _aAlgebra.
_921222
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aDiscrete Mathematics in Computer Science.
_931837
650 2 4 _aFormal Languages and Automata Theory.
_9129932
650 2 4 _aSoftware Engineering.
_94138
650 2 4 _aData Mining and Knowledge Discovery.
_9129933
650 2 4 _aOrder, Lattices, Ordered Algebraic Structures.
_932387
700 1 _aKuznetsov, Sergei O.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9129934
700 1 _aSchmidt, Stefan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9129935
710 2 _aSpringerLink (Online service)
_9129936
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783540708285
776 0 8 _iPrinted edition:
_z9783540835332
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v4390
_9129937
856 4 0 _uhttps://doi.org/10.1007/978-3-540-70901-5
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c91598
_d91598