000 | 04475nam a22006495i 4500 | ||
---|---|---|---|
001 | 978-3-540-33428-6 | ||
003 | DE-He213 | ||
005 | 20240730200010.0 | ||
007 | cr nn 008mamaa | ||
008 | 100301s2006 gw | s |||| 0|eng d | ||
020 |
_a9783540334286 _9978-3-540-33428-6 |
||
024 | 7 |
_a10.1007/11736790 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aMachine Learning Challenges _h[electronic resource] : _bEvaluating Predictive Uncertainty, Visual Object Classification, and Recognizing Textual Entailment, First Pascal Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers / _cedited by Joaquin Quinonero-Candela, Ido Dagan, Bernardo Magnini, Florence d'Alché-Buc. |
250 | _a1st ed. 2006. | ||
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2006. |
|
300 |
_aXIII, 462 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v3944 |
|
505 | 0 | _aEvaluating Predictive Uncertainty Challenge -- Classification with Bayesian Neural Networks -- A Pragmatic Bayesian Approach to Predictive Uncertainty -- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees -- Estimating Predictive Variances with Kernel Ridge Regression -- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems -- Lessons Learned in the Challenge: Making Predictions and Scoring Them -- The 2005 PASCAL Visual Object Classes Challenge -- The PASCAL Recognising Textual Entailment Challenge -- Using Bleu-like Algorithms for the Automatic Recognition of Entailment -- What Syntax Can Contribute in the Entailment Task -- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment -- Textual Entailment Recognition Based on Dependency Analysis and WordNet -- Learning Textual Entailment on a Distance Feature Space -- An Inference Model for Semantic Entailment in Natural Language -- A Lexical Alignment Model for Probabilistic Textual Entailment -- Textual Entailment Recognition Using Inversion Transduction Grammars -- Evaluating Semantic Evaluations: How RTE Measures Up -- Partial Predicate Argument Structure Matching for Entailment Determination -- VENSES - A Linguistically-Based System for Semantic Evaluation -- Textual Entailment Recognition Using a Linguistically-Motivated Decision Tree Classifier -- Recognizing Textual Entailment Via Atomic Propositions -- Recognising Textual Entailment with Robust Logical Inference -- Applying COGEX to Recognize Textual Entailment -- Recognizing Textual Entailment: Is Word Similarity Enough?. | |
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aAlgorithms. _93390 |
|
650 | 0 |
_aMachine theory. _9161850 |
|
650 | 0 |
_aNatural language processing (Computer science). _94741 |
|
650 | 0 |
_aComputer vision. _9161851 |
|
650 | 0 |
_aPattern recognition systems. _93953 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aAlgorithms. _93390 |
650 | 2 | 4 |
_aFormal Languages and Automata Theory. _9161852 |
650 | 2 | 4 |
_aNatural Language Processing (NLP). _931587 |
650 | 2 | 4 |
_aComputer Vision. _9161853 |
650 | 2 | 4 |
_aAutomated Pattern Recognition. _931568 |
700 | 1 |
_aQuinonero-Candela, Joaquin. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9161854 |
|
700 | 1 |
_aDagan, Ido. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9161855 |
|
700 | 1 |
_aMagnini, Bernardo. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9161856 |
|
700 | 1 |
_ad'Alché-Buc, Florence. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9161857 |
|
710 | 2 |
_aSpringerLink (Online service) _9161858 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783540334279 |
776 | 0 | 8 |
_iPrinted edition: _z9783540822752 |
830 | 0 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v3944 _9161859 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/11736790 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c95853 _d95853 |